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Nonlinear anomalous diffusion equation and fractal dimension:
Exact generalized Gaussian solution
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In this work we incorporate, in a unified way, two anomalous behaviors, the power law and stretched
exponential ones, by considering the radial dependence oNitiEenensional nonlinear diffusion equation
dplgt=V -(KVp")—V - (uFp)—ap, whereK=Dr % v, 6, u, andD are real parameter§, is the external
force, anda is a time-dependent source. This equation unifies the O’'Shaughnessy-Procaccia anomalous dif-
fusion equation on fractalsv& 1) and the spherical anomalous diffusion for porous media@). An exact
spherical symmetric solution of this nonlinear Fokker-Planck equation is obtained, leading to a large class of
anomalous behaviors. Stationary solutions for this Fokker-Planck-like equation are also discussed by introduc-
ing an effective potential.
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[. INTRODUCTION and references therginFurthermore, this equation has been
related to nonextensive Tsallis statistics. This connection was
Anomalous diffusion has been the subject of numeroudirst pointed by Plastino and Plasti0] and revisited by
investigations in the last years. In particular, anomalous difother authorg9,11-18.
fusion has played a fundamental role in the analysis of a Another important kind of anomalous diffusion emerges
wide class of systems, such as diffusion in plasfildstur- ~ from Eq. (1.1) whenv=1, a(t)=0 andF(r,t)=0. In this
bulent flows[2], transport of fluid in porous medi@], and ~ ¢ase, the equation
diffusion on fractals[4]. In general, anomalous diffusion ap(r,t)
may be classified employing the mean square displacement
((A%)?). When{(Ax)?)=t7, the values>1 characterizes a
superdiffusive procesg;<1 a subdiffusive one, ang=1a was related to turbulent diffusion in the atmosphere
“normal” diffusion. [17] (see also Ref[18]). Here Kxr#3 In general, in a
We consider here a quite large class of anomalous diffue-dimensional space, V-KV is proportional to
sions, namely those associated with Melimensional non- (19 ) (a/ar)(r¢ 1~ %alor+ Alr?t? (A is an operator,

=V [KVp(r,)] (1.3

linear equatiorf5] which depends on the angular variableghus,
P g (kv "V [uF IS S 14
o = VAKVIp(r O] = V-[uF(r,Hpe(r,b)] =T g (1.9
—a(t)p(r,t), (1.) s the radial part of the operat®-KV to be considered in

y ) the study ofd-dimensional spherical symmetrical solutions
whereK=Dr""% v, ¢, andD are real parameterg, is the  of Eq. (1.3). If d is interpreted as a positive real number, it
drift coefficient, F(r,t) is the external force, and(t) is @ plays a role of a fractal dimension embedding in a
time-dependent source. From the Gauss theorem one verifi@sdimensional space. Thus, E(..3 becomes, in a fractal
that this general equation preserves the ngptr,t)d"r if  framework, the O’Shaughnessy-Procaccia equdtl®h,
a(t)=0 andKV][p(r,t)]"— uF(r,t) p(r,t) goes sufficiently
rapid to zero whem =|x|—. The difference between the dp(r,t)
Fokker-Planck-like equatiofil.1l) and the usual one is that ot
the diffusion term depends on a power ofr,t) and the

diffusion coefficient is spatially dependent. Notice that this We are ready now to unify Eq$l.2) and(l.5). In fact, if
equation ford=0 anda(t)=0 has the form we consider only diffusive terms and the radial part of these

equations we havg20]

=DAp(r,t). (1.5

ap(r,t)

. DV p(r,t)]"— V- [uF(r,t)p(r,t)], (1.2 ap(r,t)

ot

=DA[p(r,t)]". (1.6)

and it is usually called porous media equation. The above Of course, if¢=0 andv=1, the usual diffusion equation
equation admits important physical applications such as peis recovered, i.e.,

colation of gases through porous mef3, thin liquid films

spreading under gravit7], some self-organizing phenom- ap(r,t) —DV2y(r t 1
ena[8], and surface growW3], among othergsee Ref[9], a pr.Y). (1.7
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In the previous scenario, E¢l.1) can be generalized so
that it is also employed in a fractal context, when spherical

symmetric solutions are considered aWdKV is replaced

by A. This paper is dedicated to investigate a class of these
solutions in the presence of source and drift terms, as well as
the stationary solutions when a general drift term is present.

The present work is organized as follows. In the following
section we review an exact solutidggeneralized Gaussian

for Eq. (1.6) and its limit cases. This generalized Gaussian
essentially gives the basis for the remaining solutions inves-

tigated here. In Sec. Ill, a formal solution for the nonlinear
Fokker-Planck equatiofiL.6) with a source term is obtained.
Section IV deals with the application of our formal solution

for a time power law source. In Sec. V, we present a gener-
alized Gaussian solution for the nonlinear Fokker-Planck

with a linear spherical force term. Furthermore, in Sec. VI,

we consider the stationary solutions for the nonlinear

Fokker-Planck equation with a general drift term. A sum-
mary of our results is presented in the last sec{®ec. VII).

II. UNIFIED POWER LAW AND STRETCHED
EXPONENTIAL SOLUTION

Motivated by the Gaussian solution of the usual diffusion,

Eqg. (1.7), it is natural to employ a generalization of such
solution when we are investigating E..6). In this direc-
tion, we follow Ref.[20] employing the ansatz,

p(r,)=[1-(1-q)BMOIM "= iz), (2.1
if 1—(1—q)B(t)r*=0, andp(r,t)=0 if 1—(1—q)B(t)r*
<0 (cutoff condition. By replacing this generalized Gauss-
ian function in Eq.(1.6), we verify that\=2+6, q=2—v,

B(t)= B[ 1+At] Mrrad-al (2.2

and

Z(t)=Zo[1+ AtV Hdd-al (2.3

whereA=D\(2—q)[A+d(1-q)18,23 !, Bo=p(0), and
Z,=2(0). It is also important to note that the prodygz*'d
is time independent.

From the solution{2.1) the mean value for a generic func-

tion f(r) can be calculated. In particular, the mean value for

r7 is given by

f ro(r,t)rd"dr
0

)

:Cgﬁfa'/}\,

(r7)y= (2.4

p(r,Hrd=dr

with

g<l1

q>1.

d

g—1 A

(q_l)(r/)\l"( )
(2.9

Observe that the existence @f”) imposes restrictions over
the parameterd. +d(1—q)>o(q—1) and\>0. In addi-
tion, the restrictiong<2 (v>0) is necessary fop(r,t) to

be real. In the following, we assume that the parameters obey
the above restrictions.

An important particular case df ?) is the mean square
displacementr?) since such mean value is commonly em-
ployed to classify the diffusion process. Thus, by taking
=2 in Egs.(2.4) and (2.5 we have

(r2)=C,By M1+ At)2+d-al, (2.6
Consequently(r2)~t212+6+d(v=1] for a sufficiently larget.
Now, it is easy to verify thap=d(1— v) describes a “nor-
mal” diffusion, even wherd#0 andv# 1. In fact, there is a
competition betweed andv in such way that the anomalous
diffusive regime induced by+ 0 is compensated by a con-
venient one withv+# 1. Furthermore, this competition leads
to a subdiffusive process whetr>d(1—v), and to a super-
diffusive one wherd<<d(1—v).

Note, also, that an alternative point of view to verify how
much a solution deviates from the usual one is to analyze the
decay ofp(0t). In other words, the way the solution de-
creases in this central point can inform about its deviation
from the normal diffusion. In our case, Eq2.1) gives
p(0t)~t~¥2T0+d=Dl in contrast withp(0t)~t~ %2, ob-
tained from the usual diffusion.

We remark that important limiting cases can be obtained
from Eq. (2.2). If #=0, the solution for the porous media
equation without the drift term is recovergd,10],

p(r,)=[1—(1—q)By(r 1"z, t), (2.7

with B(t) ~t=212+d1=a] gndz, (t) ~ V24Dl On the
other hand, forv=1, the point-source solution for the
O’Shaughnessy-Procaccia equatjd9] emerges,

p(r,)y=e B0 z,t), 2.9

whereB,~t* and Z,(t) ~t¥* 9 Moreover, Eq(2.1) re-
covers the time-translated Gaussian solution for (Ed),
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2

00 r instead of Eq(1.1). In the interest of brevity we omitted the
rt)y=———expg — —=—+——
P Dt 0] p[ 4D(tg+1)

. (2.9  drift term. The case with an external force is discussed in
Sec. V. To eliminate the source term, we proceed analogously
as in the previous paragraph. Therefore, we obtain

In fact, Eqgs.(2.2) and(2.3) can be, respectively, written as

- ap(rt) .~ .
Bt =A(to+1t) M +d=al (2.10 = DA[p(r.1Y", (3.4
and oA t s .
with D(t)=D exfg(1—v)[pa(t’)dt']. Now, we redefine the
Z(t)=~B(to+t)d’[“d(1*q”, 2.19) time variable introducing an effective time as
t;\
with A= pB,A- M +da-al - B=7z AYD+dA-a]  ang t, T(t)=f0D(t’)dt’, (3.5

=1/A. Equation(2.9 is obtained from Eq(2.1) with B(t)
and Z(t) given above in the limitv=1 and)\=2, and by S0 Eq(34) can be written as
using the normalizatiom4f p(r,t)r¢ *dr=p,, where Q4
=291 (d/2) is the solid angle in a-dimensional space. ap(r,7) ~ .
To conclude this review, we notice that our pointlike so- o —Alp(r,n]" (3.6
lution can be connected with the Tsallis entrd29].

The solution of this equation was presented and discussed in
I1I. NONLINEAR FOKKER-PLANCK EQUATION WITH Sec. Il. Thus, it is given by Eq$2.1), (2.2), and(2.3) with
TIME-DEPENDENT SOURCE TERM D=1 andt replaced byr.

. . . . . . Another possible generalized Fokker-Planck equation is
Nonlinear diffusion with absorption arises in many areas

of science such as engineering, biophysics, solid state phys-g[ p(r,t)]”

ics, and reactor, among othdl—24. This section is dedi- T=V‘{KV[P(H)]V}—V'{MF(f-t)[P(f,t)]”}
cated to the analysis of the generalized Fokker-Planck equa-
tion presented in the Introduction with a source term. This —a(t)[p(r,t)]". (3.7

kind of equation is expected to provide a basis for phenom- ] ] _ _
enological applications, where a large class of nonlineaffhis equation, wittK and « being constants, was discussed
anomalous diffusions with source plays an important role. in Ref. [25]. Note also that Eq(3.7) reduces to Eq(1.1)
Let us consider the nonlinear Fokker-Planck equatiorwhen we replacép(r,t)]” by p(r,t). In the same direction,
(1.1). The source term in this equation can be removed by athis kind of generalization can be incorporated in E}3).

appropriate change in the solution, In this paper, we will not present details about these possi-
bilities because their solutions can be directly obtained from
t R . . . Lo~
p(r,t)=exp( _j a(t’)dt’)p(r,t). (3.1) Egs.(1.2) or (3.3 by using the identificatiop=p”.
0

IV. SOME KINDS OF SOURCES

In this way, p(r,t) obeys the equation In order to have an enhanced understanding of the rel-

() evance of the source terms in the anomalous diffusion equa-
P =V~{RV[;)(r,t)]”}—V-[,uF(r,t)f)(r,t)], tion, we apply the previous general pr_ocedure to stgdy some
dat specific cases. In this context, the simplest situation to be
(3.2 investigated is whem(t) = oy, Whereay is a constant. We
also investigate a more generic source teduft) = a,t".

whereK (t) = Kexg (1— v) [{a(t')dt']. Thus, Eq(3.2) has the
same form of the corresponding one without the source term, A. Constant source
but with a time-dependent diffusion coefficigit Note that
this time dependence is induced by the nonlinear tgfin
disappearing whem=1.

As emphasized in the introduction, below HE{.7), the ex (1—v)agt]—1
replacement of the operat®t- (KV) by A enables us also to 7(t)=D (1-1)a : 4.9
analyze situations with fractal dimension as employed by 0
O'Shaughnessy-Procaccia. Thus, to investigate a radial norfhis effective time exhibits three different behaviors. For
linear anomalous diffusion equation with a source term ang¢1—)a,<0, the effective time goes exponentially to
noninteger dimensiod, we consider =D/[(v—1)ay], i.e., a stabilization occurs in the diffusive
process. For (% v)ay>0, there is an exponential increase
leading to 7(t)~D exd (1—v)agt)[(1—v)ag], When t is
large. It is interesting to remind the reader that this kind of

Now, taking into account Eq.3.3), we analyze the case
a(t)= aq. Thus, the effective time, Ed3.5), becomes

ap(r,t)
at

=DA[p(r,t)]"— a(t)p(r 1), (3.3
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behavior arises due to the nonlinearity of the diffusion equanot affected by the constant source term. These results show
tion. In this direction, we have=Dt when v=1, which  that the presence of a source term plays a relevant role on the

corresponds tg=1 as long ag|=2—v. diffusive process whem+ 1.
By using Egs.(2.2 and (2.3) with t replaced byr, we
obtain B. Source with a general power term
ext (1— v)agt]— 1| ~MD+d-a] Now we analyze the more general case corresponding to
B(r(1))= Bl 1+A 1) the sourcex,(t) = a,t", wherea,, andn are constants. The
(1=v)ag 4.2 related effective timer,(t), is given by
t 1-v)a
and Tn(t):f DeX[{( ) n(t/n+l_t8+l)}dt/,
to n+1
exf (1— v)agt]— 1) 91 +dd-a)] (4.1
Z(7(t))=2Zo| 1+A 1-1)a .
0 43 wheret, is a cutoff only used to avoid divergence when

<-1and (-v)a,/(n+1)>0. Whenn>—1, we get
Thus, from Egs(2.1) and(3.1) we verify that

an(l—v) —1/(1+n) 1
p(r,t)y=e [ 1—(1—q)B(=(t))r" ¥~ 9/Z(x(t)) wO=DT | T T ) 1+n

4.4

49 1 a,(v—Dt"
it 1-(1-@)BG(t)Hr'=0, and p(rt)=0 if 1-(1 N 19 4.12
—q)B(7(t))r*<o. :

In this solution, when (% »)¢(,<0, we have, for large HereI'(c) andI'(c,x) are the gamma and the incomplete

time, gamma functions, respectively. By using the asymptotic be-

havior forI'(c,x), we obtainr,~t™"exd —a,(v— 1)t V(1
p(r,)~e “[1-(1-q)B.r" Y9z, (45  +n)]for n>—1 and larget. For n=—1, we haver_y(t)
~124-1=1*+1 and forn< — 1, we verify thatr,(t)~t. Tak-
where ing into account the Sﬁync;lgtot)if behavior of the mean square
_ _ displacement(r?2)~ /" 4= "\we identify two different
B = Bof 1+ AL (v— 1) ]} MM +e ) 48 pehaviors Whem>—n1: if a,(v—1)>0, the mean square
displacement reaches a limit value, and it grows exponen-
tially if an(v—1)<0. For n=-1, its value goes with

_ 2[1-(1-g)a_1)/[r+d(1-q)] i - i
ZOCZZO{1+A/[(V_1)a0]}d/[)\+d(l 9] 4.7 2r2>~t2’[“d(1*q)1 . Finally, for n<—1, we obtain

and

This means thap(r,t) decays(grows exponentially in the
time when (>0 (ap<0), and is spatially limited foig V. EXTERNAL FORCES
<1 as long as(r,t)=0 if r*>1/[(1—q)B.]. In contrast,

) . ! Now we draw our attention in order to analyze the gener-
the spatial asymptotic power law behavior,

alized radial Fokker-Planck equation with a drift term. We

p(r ) ~rN=a), 4.9 take EqQ.(1.6) with a radial external force, i.e.,
arises for sufficiently largeand (1- v) ¢g>0. On the other dp(r,t) —Ppx v_ 1 9 a1
hand, wherw=1, we have ot DALp(r1] rd-1ar [ FOp(rb],

__4—d/\ _ N 2 (5.9)
p(r,t)~t exg — agt—r*(D\t)] (4.9
where we sefc equal to unity. In this section we are going to

for larget. consider a specific case of a particle moving in a harmonic
Let us focus our attention now on the mean square disspherical potentiaV/(r)=kr?/2. Thus,r =0 is a stable equi-

placement. By using the effective time in EQ.6), we ob- librium position for positivek, andr =0 is an unstable equi-

tain librium position for negativek. Eq. (5.1), with this potential,

corresponds to the Uhlenbeck-Ornstein prod&g in the

22 14 (1= m)aot 112/ +d(1-q)] particular case o#=0 andq=1 (»=2-—q).
(r9)=Caho (1-v)ag ' By using, again, the ansa2.1) into Eq.(5.1), we verify
(4.10 thatZ(t) and B(t) obey the equations,
The long time behavior for?) leads to an exponential 1dzZ -1
growth when (v)ay>0. For (1-v)ay<0, this expres- Za_Dd”)"BZ —kd (5.2

sion converges to an asymptotic value. kot 1, we have
(r2y~t?*i.e., whenv=1, the mean square displacement isand
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1dg

Em:—omzﬁzq-uk)\. (5.3

The solution for these two nonlinear coupled equations is

1
Z(t)=Zy 1+ E(Dw\,r;zozg‘l—k)

d/[N+d(1-q)]
X (1—exp{—k[A+d(1—q)]t})

(5.9

and

B(t)=Bo 1+%(DV)\B023_1_|<)

—MIN+d(1-g)]
X (1—exp{— k[)\+d(1—q)]t})}

(5.9

whose initial conditions ar&(0)=2, and 8(0)= B,.

SinceA +d(1—q)>0, for positivek, we have a station-
ary solution andr?) goes to a constant value. Whir<0,
there is no stationary state and tr&) increases exponen-
tially for larget. Our solution withé=0 corresponds to one
obtained by Tsallis and Bukmd®] for the one-dimensional

case when(x)=0. We also remark that O’Shaughnessy-

Procaccia equation, Eq1.5), when an external force is in-
corporated, is a special case of our results if we takel .

Before concluding this section, we note that in the presradial-dependent

ence of the source term; a(t)p, a similar procedure as
presented in Sec. Il can be employed, leading to (&dl)
with D replaced byD(t). Thus, Eqgs(5.2) and (5.3 must be

solved withD(t) insteadD in order to obtain the generalized
Gaussian solution.

VI. STATIONARY SOLUTIONS FOR THE NONLINEAR
FOKKER-PLANCK EQUATION

PHYSICAL REVIEW E65 041108
its stationary solution that generalizes E6.1) is

F/(lQ)

1_
p(r>=p0[1—(£) P8 Ver(r) 63

if 1—(1—q)pd Vesr/(2—0)=0, and p(r)=0 if 1—(1
—q)pg’lveff/(Z—q)<0, where introduced the effective
potential Vee(r)=J[w(r)/K(r)]VV(r)-dr. Note that

[ (r)/K(r)JVV(r) must be written as a gradient so it is
possible to obtain an effective potential in tNedimensional
case. In particular, for a three-dimensional example, this im-
plies thatV[ w(r)/K(r)]xXVV(r)=0. This condition can be
easily accomplished if we take=u(r), K=K(r), andV
=V(r). Thus, Eq.(6.3) can be written as

p(r)=pol1—B' (1= ) Ves(r) M9, (6.4)

with — B'=pg (2-q) and  Veg(r)=Ju(r)/
K(r)](dV(r)/dr]dr. Following the development presented
in the previous sections, we stress that the stationary solution
(6.4) remains true for an arbitrary noninteger dimension. For
the one-dimensional case, the soluti@®B) was obtained in
Ref.[16].

VIl. SUMMARY

In this paper we have obtained exact spherically symmet-
ric solutions for a nonlinear Fokker-Planck equation with
diffusion coefficient, time-dependent
source, and spherical external force. We remark that the
time-dependent solutions are generalizations of the Gaussian
ones.

Without both external force and source term, there is a
competition between the fractal aspect and the nonlinear be-
havior (dictated by the parameter), leading to superdiffu-
sive, “normal” and subdiffusive processes. On the other
hand, in the presence of a source term, the mean square
displacement is only affected in the nonlinear case, i.e., the

~ We can extend our study about Fokker-Planck-like equasource term modifies the superdiffusive, subdiffusive or
tion by investigating stationary solutions. The usual Fokker«normal” characters of the process wher 1. In particular,
Planck equation has a stationary solution that corresponds s behavior is notorious when a power law time-dependent

the canonical Boltzmann-Gibbs distributi®nece 2V, On the

source is considered.

other hand, the corresponding stationary solution of the non- The diffusive process with an external fordg(r)

linear equation1.2) is [16]
p(r)=po[1—(1—q)BV(r)]/~9 (6.9
if 1—-(1—-q)BV(r)=0, and p(r)=0 if 1—(1—q)BV(r)
<0. Here,8=,up3’1/[(2—q)D], po IS a positive integra-
tion constant, and-(r)=—VV(r). Notice that3>0 when

V(r) is a confining potential.
When we consider the unified nonlinear equation

ap(r,t)
ot

=V AKMVIp(r,H]"} =V -[u(nFr)p(r,0)],
(6.2

= —kr leads to different behaviors to the time dependence
of distribution function. For positivé&, we have a stationary
solution and the mean square displacement goes to a constant
value. Whernk<0 there is no stationary state and the mean
square displacement increases asymptotically in an exponen-
tial way.

In the case of the stationary solutions for our Fokker-
Planck-like equation, we obtained a generalization of the ca-
nonical Boltzmann-Gibbs distribution. This generalized solu-
tion only exists if we are able to obtain an effective potential
that includes the true potential, the drift, and the diffusion
coefficients.
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