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Nonlinear anomalous diffusion equation and fractal dimension:
Exact generalized Gaussian solution
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In this work we incorporate, in a unified way, two anomalous behaviors, the power law and stretched
exponential ones, by considering the radial dependence of theN-dimensional nonlinear diffusion equation
]r/]t5“•(K“rn)2“•(mFr)2ar, whereK5Dr 2u, n, u, m, andD are real parameters,F is the external
force, anda is a time-dependent source. This equation unifies the O’Shaughnessy-Procaccia anomalous dif-
fusion equation on fractals (n51) and the spherical anomalous diffusion for porous media (u50). An exact
spherical symmetric solution of this nonlinear Fokker-Planck equation is obtained, leading to a large class of
anomalous behaviors. Stationary solutions for this Fokker-Planck-like equation are also discussed by introduc-
ing an effective potential.

DOI: 10.1103/PhysRevE.65.041108 PACS number~s!: 05.20.2y, 05.40.Fb, 05.40.Jc
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I. INTRODUCTION

Anomalous diffusion has been the subject of numer
investigations in the last years. In particular, anomalous
fusion has played a fundamental role in the analysis o
wide class of systems, such as diffusion in plasmas@1#, tur-
bulent flows@2#, transport of fluid in porous media@3#, and
diffusion on fractals@4#. In general, anomalous diffusio
may be classified employing the mean square displacem
^(Dx)2&. When^(Dx)2&}th, the valueh.1 characterizes a
superdiffusive process,h,1 a subdiffusive one, andh51 a
‘‘normal’’ diffusion.

We consider here a quite large class of anomalous di
sions, namely those associated with theN-dimensional non-
linear equation@5#

]r~r ,t !

]t
5“•$K“@r~r ,t !#n%2“•@mF~r ,t !r~r ,t !#

2a~ t !r~r ,t !, ~1.1!

whereK5Dr 2u, n, u, andD are real parameters,m is the
drift coefficient, F(r ,t) is the external force, anda(t) is a
time-dependent source. From the Gauss theorem one ve
that this general equation preserves the norm*r(r ,t)dNr if
a(t)50 andK“@r(r ,t)#n2mF(r ,t)r(r ,t) goes sufficiently
rapid to zero whenr 5uxu→`. The difference between th
Fokker-Planck-like equation~1.1! and the usual one is tha
the diffusion term depends on a power ofr(r ,t) and the
diffusion coefficient is spatially dependent. Notice that th
equation foru50 anda(t)50 has the form

]r~r ,t !

]t
5D¹2@r~r ,t !#n2“•@mF~r ,t !r~r ,t !#, ~1.2!

and it is usually called porous media equation. The ab
equation admits important physical applications such as
colation of gases through porous media@6#, thin liquid films
spreading under gravity@7#, some self-organizing phenom
ena @8#, and surface grow@3#, among others~see Ref.@9#,
1063-651X/2002/65~4!/041108~6!/$20.00 65 0411
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and references therein!. Furthermore, this equation has be
related to nonextensive Tsallis statistics. This connection
first pointed by Plastino and Plastino@10# and revisited by
other authors@9,11–16#.

Another important kind of anomalous diffusion emerg
from Eq. ~1.1! when n51, a(t)50 andF(r ,t)50. In this
case, the equation

]r~r ,t !

]t
5“•@K“r~r ,t !# ~1.3!

was related to turbulent diffusion in the atmosphe
@17# ~see also Ref.@18#!. Here K}r 4/3. In general, in a
d-dimensional space, “•K“ is proportional to
(1/r d21)(]/]r )(r d212u)]/]r 1A/r 21u (A is an operator,
which depends on the angular variables!. Thus,

D̃5
1

r d21

]

]r
r d212u

]

]r
~1.4!

is the radial part of the operator“•K“ to be considered in
the study ofd-dimensional spherical symmetrical solution
of Eq. ~1.3!. If d is interpreted as a positive real number,
plays a role of a fractal dimension embedding in
N-dimensional space. Thus, Eq.~1.3! becomes, in a fracta
framework, the O’Shaughnessy-Procaccia equation@19#,

]r~r ,t !

]t
5DD̃r~r ,t !. ~1.5!

We are ready now to unify Eqs.~1.2! and~1.5!. In fact, if
we consider only diffusive terms and the radial part of the
equations we have@20#

]r~r ,t !

]t
5DD̃@r~r ,t !#n. ~1.6!

Of course, ifu50 andn51, the usual diffusion equation
is recovered, i.e.,

]r~r ,t !

]t
5D¹2r~r ,t !. ~1.7!
©2002 The American Physical Society08-1
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In the previous scenario, Eq.~1.1! can be generalized s
that it is also employed in a fractal context, when spheri
symmetric solutions are considered and“•K“ is replaced
by D̃. This paper is dedicated to investigate a class of th
solutions in the presence of source and drift terms, as we
the stationary solutions when a general drift term is pres

The present work is organized as follows. In the followi
section we review an exact solution~generalized Gaussian!
for Eq. ~1.6! and its limit cases. This generalized Gauss
essentially gives the basis for the remaining solutions inv
tigated here. In Sec. III, a formal solution for the nonline
Fokker-Planck equation~1.6! with a source term is obtained
Section IV deals with the application of our formal solutio
for a time power law source. In Sec. V, we present a gen
alized Gaussian solution for the nonlinear Fokker-Plan
with a linear spherical force term. Furthermore, in Sec.
we consider the stationary solutions for the nonline
Fokker-Planck equation with a general drift term. A su
mary of our results is presented in the last section~Sec. VII!.

II. UNIFIED POWER LAW AND STRETCHED
EXPONENTIAL SOLUTION

Motivated by the Gaussian solution of the usual diffusio
Eq. ~1.7!, it is natural to employ a generalization of suc
solution when we are investigating Eq.~1.6!. In this direc-
tion, we follow Ref.@20# employing the ansatz,

r~r ,t !5@12~12q!b~ t !r l#1/(12q)/Z~ t !, ~2.1!

if 1 2(12q)b(t)r l>0, andr(r ,t)50 if 12(12q)b(t)r l

,0 ~cutoff condition!. By replacing this generalized Gaus
ian function in Eq.~1.6!, we verify thatl521u, q522n,

b~ t !5b0@11At#2l/[l1d(12q)] , ~2.2!

and

Z~ t !5Z0@11At#d/[l1d(12q)] , ~2.3!

whereA5Dl(22q)@l1d(12q)#b0Z0
q21 , b05b(0), and

Z05Z(0). It is also important to note that the productbZl/d

is time independent.
From the solution~2.1! the mean value for a generic func

tion f (r ) can be calculated. In particular, the mean value
r s is given by

^r s&5

E
0

`

r sr~r ,t !r d21dr

E
0

`

r~r ,t !r d21dr

5Csb2s/l, ~2.4!

with
04110
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r

Cs5

GS s1d

l D
GS d

l D

3

¦

GS 1

12q
1

d

l
11D

~12q!s/lGS s1d

l
1

1

12q
11D q,1

GS 1

q21
2

d1s

l D
~q21!s/lGS 1

q21
2

d

l D q.1.

~2.5!

Observe that the existence of^r s& imposes restrictions ove
the parametersl1d(12q).s(q21) and l.0. In addi-
tion, the restrictionq,2 (n.0) is necessary forr(r ,t) to
be real. In the following, we assume that the parameters o
the above restrictions.

An important particular case of̂r s& is the mean square
displacement̂ r 2& since such mean value is commonly em
ployed to classify the diffusion process. Thus, by takings
52 in Eqs.~2.4! and ~2.5! we have

^r 2&5C2b0
22/l@11At#2/[l1d(12q)] . ~2.6!

Consequently,̂r 2&;t2/[21u1d(n21)] for a sufficiently larget.
Now, it is easy to verify thatu5d(12n) describes a ‘‘nor-
mal’’ diffusion, even whenuÞ0 andnÞ1. In fact, there is a
competition betweenu andn in such way that the anomalou
diffusive regime induced byuÞ0 is compensated by a con
venient one withnÞ1. Furthermore, this competition lead
to a subdiffusive process whenu.d(12n), and to a super-
diffusive one whenu,d(12n).

Note, also, that an alternative point of view to verify ho
much a solution deviates from the usual one is to analyze
decay ofr(0,t). In other words, the way the solution de
creases in this central point can inform about its deviat
from the normal diffusion. In our case, Eq.~2.1! gives
r(0,t);t2d/[21u1d(n21)] in contrast withr(0,t);t2d/2, ob-
tained from the usual diffusion.

We remark that important limiting cases can be obtain
from Eq. ~2.1!. If u50, the solution for the porous medi
equation without the drift term is recovered@9,10#,

r~r ,t !5@12~12q!b1~ t !r 2#1/(12q)/Z1~ t !, ~2.7!

with b1(t);t22/[21d(12q)] andZ1(t);td/[21d(12q)] . On the
other hand, forn51, the point-source solution for th
O’Shaughnessy-Procaccia equation@19# emerges,

r~r ,t !5e2b2(t)r u12
/Z2~ t !, ~2.8!

whereb2;t21 andZ2(t);td/(21u). Moreover, Eq.~2.1! re-
covers the time-translated Gaussian solution for Eq.~1.7!,
8-2
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r~r ,t !5
r0

@4pD~ t01t !#d/2
expF2

r 2

4D~ t01t !G . ~2.9!

In fact, Eqs.~2.2! and ~2.3! can be, respectively, written as

b~ t !5Ã~ t01t !2l/[l1d(12q)] ~2.10!

and

Z~ t !5B̃~ t01t !d/[l1d(12q)] , ~2.11!

with Ã5b0A2l/[l1d(12q)] , B̃5Z0Ad/[l1d(12q)] , and t0
51/A. Equation~2.9! is obtained from Eq.~2.1! with b(t)
and Z(t) given above in the limitn51 andl52, and by
using the normalizationVd*r(r ,t)r d21dr5r0, where Vd
52pd/2/G(d/2) is the solid angle in ad-dimensional space

To conclude this review, we notice that our pointlike s
lution can be connected with the Tsallis entropy@20#.

III. NONLINEAR FOKKER-PLANCK EQUATION WITH
TIME-DEPENDENT SOURCE TERM

Nonlinear diffusion with absorption arises in many are
of science such as engineering, biophysics, solid state p
ics, and reactor, among others@21–24#. This section is dedi-
cated to the analysis of the generalized Fokker-Planck e
tion presented in the Introduction with a source term. T
kind of equation is expected to provide a basis for pheno
enological applications, where a large class of nonlin
anomalous diffusions with source plays an important role

Let us consider the nonlinear Fokker-Planck equat
~1.1!. The source term in this equation can be removed by
appropriate change in the solution,

r~r ,t !5expS 2E
0

t

a~ t8!dt8D r̂~r ,t !. ~3.1!

In this way, r̂(r ,t) obeys the equation

]r̂~r ,t !

]t
5“•$K̂“@ r̂~r ,t !#n%2“•@mF~r ,t !r̂~r ,t !#,

~3.2!

whereK̂(t)5Kexp@(12n)*0
t a(t8)dt8#. Thus, Eq.~3.2! has the

same form of the corresponding one without the source te
but with a time-dependent diffusion coefficientK̂. Note that
this time dependence is induced by the nonlinear termrn,
disappearing whenn51.

As emphasized in the introduction, below Eq.~1.7!, the
replacement of the operator“•(K̂“) by D̃ enables us also to
analyze situations with fractal dimension as employed
O’Shaughnessy-Procaccia. Thus, to investigate a radial
linear anomalous diffusion equation with a source term a
noninteger dimensiond, we consider

]r~r ,t !

]t
5DD̃@r~r ,t !#n2a~ t !r~r ,t !, ~3.3!
04110
-

s
s-

a-
s
-
r

n
n

,

y
n-
d

instead of Eq.~1.1!. In the interest of brevity we omitted th
drift term. The case with an external force is discussed
Sec. V. To eliminate the source term, we proceed analogo
as in the previous paragraph. Therefore, we obtain

]r̂~r ,t !

]t
5D̂D̃@ r̂~r ,t !#n, ~3.4!

with D̂(t)5D exp@(12n)*0
t a(t8)dt8#. Now, we redefine the

time variable introducing an effective time as

t~ t !5E
0

t

D̂~ t8!dt8, ~3.5!

so Eq.~3.4! can be written as

]r̂~r ,t!

]t
5D̃@ r̂~r ,t!#n. ~3.6!

The solution of this equation was presented and discusse
Sec. II. Thus, it is given by Eqs.~2.1!, ~2.2!, and~2.3! with
D51 andt replaced byt.

Another possible generalized Fokker-Planck equation

]@r~r ,t !#h

]t
5“•$K“@r~r ,t !#n%2“•$mF~r ,t !@r~r ,t !#h%

2a~ t !@r~r ,t !#h. ~3.7!

This equation, withK anda being constants, was discusse
in Ref. @25#. Note also that Eq.~3.7! reduces to Eq.~1.1!
when we replace@r(r ,t)#h by r̃(r ,t). In the same direction
this kind of generalization can be incorporated in Eq.~3.3!.
In this paper, we will not present details about these po
bilities because their solutions can be directly obtained fr
Eqs.~1.1! or ~3.3! by using the identificationr̃5rh.

IV. SOME KINDS OF SOURCES

In order to have an enhanced understanding of the
evance of the source terms in the anomalous diffusion eq
tion, we apply the previous general procedure to study so
specific cases. In this context, the simplest situation to
investigated is whena(t)5a0, wherea0 is a constant. We
also investigate a more generic source term,a(t)5antn.

A. Constant source

Now, taking into account Eq.~3.3!, we analyze the case
a(t)5a0. Thus, the effective time, Eq.~3.5!, becomes

t~ t !5D
exp@~12n!a0t#21

~12n!a0
. ~4.1!

This effective time exhibits three different behaviors. F
(12n)a0,0, the effective time goes exponentially tot`

5D/@(n21)a0#, i.e., a stabilization occurs in the diffusiv
process. For (12n)a0.0, there is an exponential increas
leading to t(t)'D exp@(12n)a0t#/@(12n)a0#, when t is
large. It is interesting to remind the reader that this kind
8-3
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behavior arises due to the nonlinearity of the diffusion eq
tion. In this direction, we havet5Dt when n51, which
corresponds toq51 as long asq522n.

By using Eqs.~2.2! and ~2.3! with t replaced byt, we
obtain

b„t~ t !…5b0S 11A
exp@~12n!a0t#21

~12n!a0
D 2l/[l1d(12q)]

~4.2!

and

Z„t~ t !…5Z0S 11A
exp@~12n!a0t#21

~12n!a0
D d/[l1d(12q)]

.

~4.3!

Thus, from Eqs.~2.1! and ~3.1! we verify that

r~r ,t !5e2a0t@12~12q!b„t~ t !…r l#1/(12q)/Z„t~ t !…
~4.4!

if 1 2(12q)b„t(t)…r l>0, and r(r ,t)50 if 12(1
2q)b„t(t)…r l,0.

In this solution, when (12n)a0,0, we have, for large
time,

r~r ,t !'e2a0t@12~12q!b`r l#1/(12q)/Z` , ~4.5!

where

b`5b0$11A/@~n21!a0#%2l/[l1d(12q)] ~4.6!

and

Z`5Z0$11A/@~n21!a0#%d/[l1d(12q)] . ~4.7!

This means thatr(r ,t) decays~grows! exponentially in the
time whena0.0 (a0,0), and is spatially limited forq
,1 as long asr(r ,t)50 if r l>1/@(12q)b`#. In contrast,
the spatial asymptotic power law behavior,

r~r ,t !;r l/(12q), ~4.8!

arises for sufficiently larget and (12n)a0.0. On the other
hand, whenn51, we have

r~r ,t !;t2d/l exp@2a0t2r l/~Dl2t !# ~4.9!

for large t.
Let us focus our attention now on the mean square

placement. By using the effective time in Eq.~2.6!, we ob-
tain

^r 2&5C2b0
22/lF11A

e(12n)a0t21

~12n!a0
G2/[l1d(12q)]

.

~4.10!

The long time behavior for̂ r 2& leads to an exponentia
growth when (12n)a0.0. For (12n)a0,0, this expres-
sion converges to an asymptotic value. Forn51, we have
^r 2&;t2/l, i.e., whenn51, the mean square displacement
04110
-

s-

not affected by the constant source term. These results s
that the presence of a source term plays a relevant role on
diffusive process whennÞ1.

B. Source with a general power term

Now we analyze the more general case correspondin
the sourcean(t)5antn, wherean andn are constants. The
related effective time,tn(t), is given by

tn~ t !5E
t0

t

D expF ~12n!an

n11
~ t8n112t0

n11!Gdt8,

~4.11!

where t0 is a cutoff only used to avoid divergence whenn
<21 and (12n)an /(n11).0. Whenn.21, we get

tn~ t !5D
1

n11 S 2
an~12n!

11n D 21/(11n)FGS 1

11nD
2GS 1

11n
,
an~n21!t11n

11n D G . ~4.12!

Here G(c) and G(c,x) are the gamma and the incomple
gamma functions, respectively. By using the asymptotic
havior for G(c,x), we obtaintn;t2n exp@2an(n21)t11n/(1
1n)# for n.21 and larget. For n521, we havet21(t)
;ta21(12n)11, and forn,21, we verify thattn(t);t. Tak-
ing into account the asymptotic behavior of the mean squ
displacement,̂ r 2&;tn

2/[l1d(12q)] , we identify two different
behaviors whenn.21: if an(n21).0, the mean square
displacement reaches a limit value, and it grows expon
tially if an(n21),0. For n521, its value goes with
t2[12(12q)a21]/[ l1d(12q)] . Finally, for n,21, we obtain
^r 2&;t2/[l1d(12q)] .

V. EXTERNAL FORCES

Now we draw our attention in order to analyze the gen
alized radial Fokker-Planck equation with a drift term. W
take Eq.~1.6! with a radial external force, i.e.,

]r~r ,t !

]t
5DD̃@r~r ,t !#n2

1

r d21

]

]r
@r d21F~r !r~r ,t !#,

~5.1!

where we setm equal to unity. In this section we are going
consider a specific case of a particle moving in a harmo
spherical potentialV(r )5kr2/2. Thus,r 50 is a stable equi-
librium position for positivek, andr 50 is an unstable equi
librium position for negativek. Eq. ~5.1!, with this potential,
corresponds to the Uhlenbeck-Ornstein process@26# in the
particular case ofu50 andq51 (n522q).

By using, again, the ansatz~2.1! into Eq. ~5.1!, we verify
that Z(t) andb(t) obey the equations,

1

Z

dZ

dt
5DdnlbZq212kd ~5.2!

and
8-4
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1

b

db

dt
52Dnl2bZq211kl. ~5.3!

The solution for these two nonlinear coupled equations i

Z~ t !5Z0F11
1

k
~Dnlb0Z0

q212k!

3„12exp$2k@l1d~12q!#t%…Gd/[l1d(12q)]

~5.4!

and

b~ t !5b0F11
1

k
(Dnlb0Z0

q212k)

3„12exp{2k[l1d(12q)] t‰…G2l/[l1d(12q)]

,

~5.5!

whose initial conditions areZ(0)5Z0 andb(0)5b0.
Sincel1d(12q).0, for positivek, we have a station-

ary solution and̂ r 2& goes to a constant value. Whenk,0,
there is no stationary state and the^r 2& increases exponen
tially for large t. Our solution withu50 corresponds to one
obtained by Tsallis and Bukman@9# for the one-dimensiona
case when^x&50. We also remark that O’Shaughness
Procaccia equation, Eq.~1.5!, when an external force is in
corporated, is a special case of our results if we taken51.

Before concluding this section, we note that in the pr
ence of the source term,2a(t)r, a similar procedure as
presented in Sec. III can be employed, leading to Eq.~5.1!
with D replaced byD̂(t). Thus, Eqs.~5.2! and~5.3! must be
solved withD̂(t) insteadD in order to obtain the generalize
Gaussian solution.

VI. STATIONARY SOLUTIONS FOR THE NONLINEAR
FOKKER-PLANCK EQUATION

We can extend our study about Fokker-Planck-like eq
tion by investigating stationary solutions. The usual Fokk
Planck equation has a stationary solution that correspond
the canonical Boltzmann-Gibbs distributionP}e2bV. On the
other hand, the corresponding stationary solution of the n
linear equation~1.2! is @16#

r~r !5r0@12~12q!bV~r !#1/(12q) ~6.1!

if 1 2(12q)bV(r )>0, and r(r )50 if 12(12q)bV(r )
,0. Hereb5mr0

q21/@(22q)D#, r0 is a positive integra-
tion constant, andF(r )52“V(r ). Notice thatb.0 when
V(r ) is a confining potential.

When we consider the unified nonlinear equation

]r~r ,t !

]t
5“•$K~r !“@r~r ,t !#n%2“•@m~r !F~r !r~r ,t !#,

~6.2!
04110
-

-

-
-
to

n-

its stationary solution that generalizes Eq.~6.1! is

r~r !5r0F12S 12q

22qD r0
q21Ve f f~r !G1/(12q)

~6.3!

if 1 2(12q)r0
q21Ve f f /(22q)>0, and r(r )50 if 12(1

2q)r0
q21Ve f f /(22q),0, where introduced the effectiv

potential Ve f f(r )5*@m(r )/K(r )#“V(r )•dr . Note that
@m(r )/K(r )#“V(r ) must be written as a gradient so it
possible to obtain an effective potential in theN-dimensional
case. In particular, for a three-dimensional example, this
plies that“@m(r )/K(r )#3“V(r )50. This condition can be
easily accomplished if we takem5m(r ), K5K(r ), and V
5V(r ). Thus, Eq.~6.3! can be written as

r~r !5r0@12b8~12q!Ve f f~r !#1/(12q), ~6.4!

with b85r0
q21/(22q) and Ve f f(r )5*@m(r )/

K(r )#(dV(r )/dr#dr. Following the development presente
in the previous sections, we stress that the stationary solu
~6.4! remains true for an arbitrary noninteger dimension. F
the one-dimensional case, the solution~6.3! was obtained in
Ref. @16#.

VII. SUMMARY

In this paper we have obtained exact spherically symm
ric solutions for a nonlinear Fokker-Planck equation w
radial-dependent diffusion coefficient, time-depende
source, and spherical external force. We remark that
time-dependent solutions are generalizations of the Gaus
ones.

Without both external force and source term, there i
competition between the fractal aspect and the nonlinear
havior ~dictated by the parametern), leading to superdiffu-
sive, ‘‘normal’’ and subdiffusive processes. On the oth
hand, in the presence of a source term, the mean sq
displacement is only affected in the nonlinear case, i.e.,
source term modifies the superdiffusive, subdiffusive
‘‘normal’’ characters of the process whennÞ1. In particular,
this behavior is notorious when a power law time-depend
source is considered.

The diffusive process with an external forceF(r )
52k r leads to different behaviors to the time dependen
of distribution function. For positivek, we have a stationary
solution and the mean square displacement goes to a con
value. Whenk,0 there is no stationary state and the me
square displacement increases asymptotically in an expo
tial way.

In the case of the stationary solutions for our Fokk
Planck-like equation, we obtained a generalization of the
nonical Boltzmann-Gibbs distribution. This generalized so
tion only exists if we are able to obtain an effective potent
that includes the true potential, the drift, and the diffusi
coefficients.
8-5



ev

d

e
.

us

le

ur.

zi,

in

PEDRON, MENDES, MALACARNE, AND LENZI PHYSICAL REVIEW E65 041108
@1# J. G. Berryman, J. Math. Phys.18, 2108~1977!.
@2# M. F. Shlesinger, J. Klafter, and B. J. West, Physica A140, 212

~1986!; M. F. Shlesinger, B. J. West, and J. Klafter, Phys. R
Lett. 58, 1100~1987!.

@3# H. Spohn, J. Phys.~France! Lett. 13, 69 ~1993!.
@4# J. Stephenson, Physica A222, 234 ~1995!.
@5# Another representative approach to investigate anomalous

fusion is to consider integral equations~fractional derivatives!.
For instance, see J. Klafer, A. Blumen, and M. F. Shlesing
Phys. Rev. A35, 3081 ~1987!; R. Metzler, E. Barkai, and J
Klafter, Phys. Rev. Lett.82, 3563~1999!; for a review see R.
Metzler and J. Klafter, Phys. Rep.339, 1 ~2000!.

@6# M. Muskat,The Flow of Homogeneous Fluids Through Poro
Media ~McGraw-Hill, New York, 1937!.

@7# J. Buckmaster, J. Fluid Mech.81, 735 ~1977!.
@8# J. M. Carlson, E. R. Grannan, C. Singh, and G. H. Swind

Phys. Rev. E48, 688 ~1993!.
@9# C. Tsallis and D. J. Bukman, Phys. Rev. E54, R2197~1996!.

@10# A. R. Plastino and A. Plastino, Physica A222, 347 ~1995!.
@11# D. A. Stariolo, Phys. Lett. A185, 262~1994!; Phys. Rev. E55,

4806 ~1997!.
@12# A. Compte and D. Jou, J. Phys. A29, 4321~1996!.
@13# A. Compte, D. Jou, and Y. Katayama, J. Phys. A30, 1023

~1997!.
04110
.

if-

r,

,

@14# S. Martinez, A. R. Plastino, and A. Plastino, Physica A259,
183 ~1998!.

@15# L. Borland, Phys. Rev. E57, 6634~1998!.
@16# L. Borland, F. Pennini, A. R. Plastino, and A. Plastino, E

Phys. J. B12, 285 ~1999!.
@17# L. F. Richardson, Proc. R. Soc. London, Ser. A110, 709

~1926!.
@18# K. Takagoshi and H. Mori, Prog. Theor. Phys.68, 439 ~1982!;

H. G. E. Hentschel and I. Procaccia, Phys. Rev. A27, 1266
~1983!; 29, 1461~1984!.

@19# B. O’Shaughnessy and I. Procaccia, Phys. Rev. Lett.54, 455
~1985!; Phys. Rev. A32, 3073~1985!.

@20# L. C. Malacarne, R. S. Mendes, I. T. Pedron, and E. K. Len
Phys. Rev. E63, 030101~R! ~2001!.

@21# A. C. Scott, Rev. Mod. Phys.47, 487 ~1975!.
@22# J. D. Murray,Mathematical Biology~Springer-Verlag, Berlin,

1989!.
@23# R. Aris, The Mathematical Theory of Diffusion and Reaction

Permeable Catalysts~Clarendon, Oxford, 1989!, Vols. I and II.
@24# A. K. Myers-Beaghton and D. D. Vvedensky, Phys. Rev. B42,

5544 ~1990!.
@25# G. Drazer, H. S. Wio, and C. Tsallis, Phys. Rev. E61, 1417

~2000!.
@26# G. E. Uhlenbeck and L. S. Ornstein, Phys. Rev.36, 823

~1930!.
8-6


